A unique pathway of cardiac myocyte death caused by hypoxia–acidosis

Author:

Graham Regina M.1,Frazier Donna P.1,Thompson John W.1,Haliko Shannon1,Li Huifang1,Wasserlauf Bernard J.1,Spiga Maria-Grazia1,Bishopric Nanette H.1,Webster Keith A.1

Affiliation:

1. Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute, University of Miami Medical Center, Miami, FL 33101,USA

Abstract

SUMMARY Chronic hypoxia in the presence of high glucose leads to progressive acidosis of cardiac myocytes in culture. The condition parallels myocardial ischemia in vivo, where ischemic tissue becomes rapidly hypoxic and acidotic. Cardiac myocytes are resistant to chronic hypoxia at neutral pH but undergo extensive death when the extracellular pH (pH[o]) drops below 6.5. A microarray analysis of 20 000 genes (cDNAs and expressed sequence tags)screened with cDNAs from aerobic and hypoxic cardiac myocytes identified>100 genes that were induced by >2-fold and ∼20 genes that were induced by >5-fold. One of the most strongly induced transcripts was identified as the gene encoding the pro-apoptotic Bcl-2 family member BNIP3. Northern and western blot analyses confirmed that BNIP3 was induced by 12-fold(mRNA) and 6-fold (protein) during 24 h of hypoxia. BNIP3 protein, but not the mRNA, accumulated 3.5-fold more rapidly under hypoxia–acidosis. Cell fractionation experiments indicated that BNIP3 was loosely bound to mitochondria under conditions of neutral hypoxia but was translocated into the membrane when the myocytes were acidotic. Translocation of BNIP3 coincided with opening of the mitochondrial permeability pore (MPTP). Paradoxically,mitochondrial pore opening did not promote caspase activation, and broad-range caspase inhibitors do not block this cell death pathway. The pathway was blocked by antisense BNIP3 oligonucleotides and MPTP inhibitors. Therefore,cardiac myocyte death during hypoxia–acidosis involves two distinct steps: (1) hypoxia activates transcription of the death-promoting BNIP3 gene through a hypoxia-inducible factor-1 (HIF-1) site in the promoter and (2) acidosis activates BNIP3 by promoting membrane translocation. This is an atypical programmed death pathway involving a combination of the features of apoptosis and necrosis. In this article, we will review the evidence for this unique pathway of cell death and discuss its relevance to ischemic heart disease. The article also contains new evidence that chronic hypoxia at neutral pH does not promote apoptosis or activate caspases in neonatal cardiac myocytes.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3