Hyperbaric tracheobronchial compression in cetaceans and pinnipeds

Author:

Denk Michael A.1,Fahlman Andreas2,Dennison-Gibby Sophie3,Song Zhongchang45ORCID,Moore Michael4

Affiliation:

1. Kansas State University College of Veterinary Medicine, Manhattan, KS, USA

2. Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia. Spain

3. Televet Imaging Solutions, PLLC, Oakton VA 22124, USA

4. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

5. Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, People's Republic of China

Abstract

Assessment of the compressibility of marine mammal airways at depth is crucial to understanding vital physiologic processes such as gas exchange during diving. Very few studies have directly assessed changes in cetacean and pinniped trachea-bronchial shape, and none have quantified changes in volume with increasing pressure. A freshly deceased harbor seal, grey seal, harp seal, harbor porpoise, and common dolphin were imaged post mortem via CT in a radiolucent hyperbaric chamber as previously described in Moore et al (2011). Volume reconstructions were performed of segments of the trachea and bronchi of the pinnipeds and bronchi of the cetaceans for each pressure treatment. All specimens examined demonstrated significant decreases in volume with increasing pressure, with the harbor seal and common dolphin nearing complete collapse at the highest pressures. The common dolphin bronchi demonstrated distinctly different compression dynamics between 50% and 100% lung inflation treatments, indicating the importance of air in maintaining patent airways, and collapse occurred caudally to cranially in the 50% treatment. Dynamics of the harbor seal and grey seal airways indicated that the trachea was less compliant than the bronchi. These findings indicate potential species-specific variability in airway compliance, and cessation of gas exchange may occur at greater depths than those predicted in models assuming rigid airways. This may potentially increase the likelihood of decompression sickness in these animals during diving.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3