Isolation and Characterization of Secretory Vesicles in Germinated Pollen of Lilium longiflorum

Author:

VAN DER WOUDE W. J.1,MORRÉ D. J.1,BRACKER C. E.1

Affiliation:

1. Department of Botany, Plant Pathology, Purdue University, Lafayette, Indiana 47907, U.S.A.

Abstract

Secretory vesicles containing polysaccharide were isolated from germinated pollen of Lilium longiflorum and characterized by biochemical and ultrastructural investigation. Pollen tubes exhibit a secretory pathway in which the vesicles concentrated in the tube apex are produced by the Golgi apparatus and contributed to the cell wall at the apex upon fusion of the vesicle membrane with the plasma membrane. Secretory vesicles were isolated by a method involving the size discrimination of cytoplasmic components using Millipore filters. Cells were disrupted under conditions which minimized membrane vesiculation. Identification was made by electron-microscopic comparison of the periodic acid-silver hexamine (PASH) reactivities of in situ and isolated secretory vesicles. The secretory vesicles contained polysaccharides which were high in galacturonic acid and similar in sugar composition to those of the hot-water-soluble fraction of pollen tube cell wall. A hot-water-insoluble, non-cellulosic glucan was the major component of the cell wall. Less than 7% of the wall was cellulosic. Chitin was absent. Similarities in the ultrastructure and PASH staining of apical secretory vesicles and an amorphous component of the cell wall support a precursor-product relationship between these 2 cell components. Ultrastructural investigations revealed complexes of the endoplasmic reticulum (ER) associated with electron-translucent regions of cytoplasm, suggesting a possible function of the ER in cell wall formation. Additionally, patterns of PASH staining show that changes in polysaccharides occur in secretory vesicles after vesicles have been formed by dictyosomes. Therefore, secretory vesicles may have a role in polysaccharide synthesis as well as in membrane and product transport.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3