Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors

Author:

Birkholz Oliver1,Rickert Christof1,Berger Christian1,Urbach Rolf1,Technau Gerhard M.1

Affiliation:

1. Institute of Genetics, University of Mainz, D-55099 Mainz, Germany.

Abstract

The central nervous system is composed of segmental units (neuromeres), the size and complexity of which evolved in correspondence to their functional requirements. In Drosophila, neuromeres develop from populations of neural stem cells (neuroblasts) that delaminate from the early embryonic neuroectoderm in a stereotyped spatial and temporal pattern. Pattern units closely resemble the ground state and are rather invariant in thoracic (T1-T3) and anterior abdominal (A1-A7) segments of the embryonic ventral nerve cord. Here, we provide a comprehensive neuroblast map of the terminal abdominal neuromeres A8-A10, which exhibit a progressively derived character. Compared with thoracic and anterior abdominal segments, neuroblast numbers are reduced by 28% in A9 and 66% in A10 and are almost entirely absent in the posterior compartments of these segments. However, all neuroblasts formed exhibit serial homology to their counterparts in more anterior segments and are individually identifiable based on their combinatorial code of marker gene expression, position, delamination time point and the presence of characteristic progeny cells. Furthermore, we traced the embryonic origin and characterised the postembryonic lineages of a set of terminal neuroblasts, which have been previously reported to exhibit sex-specific proliferation behaviour during postembryonic development. We show that the respective sex-specific product of the gene doublesex promotes programmed cell death of these neuroblasts in females, and is needed for their survival, but not proliferation, in males. These data establish the terminal neuromeres as a model for further investigations into the mechanisms controlling segment- and sex-specific patterning in the central nervous system.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3