c-Kit+ cells isolated from human fetal retinas represent a new population of retinal progenitor cells

Author:

Zhou Peng-Yi1,Peng Guang-Hua12,Xu Haiwei34,Yin Zheng Qin34

Affiliation:

1. Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, He'nan 450003, China

2. Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China

3. Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China

4. Key Lab of Ophthalmology of Chinese People's Liberation Army, Chongqing 400038, China

Abstract

ABSTRACT Definitive surface markers for retinal progenitor cells (RPCs) are still lacking. Therefore, we sorted c-Kit+ and stage-specific embryonic antigen-4− (SSEA4−) retinal cells for further biological characterization. RPCs were isolated from human fetal retinas (gestational age of 12–14 weeks). c-Kit+/SSEA4− RPCs were sorted by fluorescence-activated cell sorting, and their proliferation and differentiation capabilities were evaluated by using immunocytochemistry and flow cytometry. The effectiveness and safety were assessed following injection of c-Kit+/SSEA4− cells into the subretina of Royal College of Surgeons (RCS) rats. c-Kit+ cells were found in the inner part of the fetal retina. Sorted c-Kit+/SSEA4− cells expressed retinal stem cell markers. Our results clearly demonstrate the proliferative potential of these cells. Moreover, c-Kit+/SSEA4− cells differentiated into retinal cells that expressed markers of photoreceptor cells, ganglion cells and glial cells. These cells survived for at least 3 months after transplantation into the host subretinal space. Teratomas were not observed in the c-Kit+/SSEA4−-cell group. Thus, c-Kit can be used as a surface marker for RPCs, and c-Kit+/SSEA4− RPCs exhibit the ability to self-renew and differentiate into retinal cells.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3