Dissecting cause from consequence: a systematic approach to thermal limits

Author:

MacMillan Heath A.1ORCID

Affiliation:

1. Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6

Abstract

ABSTRACT Thermal limits mark the boundaries of ectotherm performance, and are increasingly appreciated as strong correlates and possible determinants of animal distribution patterns. The mechanisms setting the thermal limits of ectothermic animals are under active study and rigorous debate as we try to reconcile new observations in the lab and field with the knowledge gained from a long history of research on thermal adaptation. Here, I provide a perspective on our divided understanding of the mechanisms setting thermal limits of ectothermic animals. I focus primarily on the fundamental differences between high and low temperatures, and how animal form and environment can place different constraints on different taxa. Together, complexity and variation in animal form drive complexity in the interactions within and among levels of biological organization, creating a formidable barrier to determining mechanistic cause and effect at thermal limits. Progress in our understanding of thermal limits will require extensive collaboration and systematic approaches that embrace this complexity and allow us to separate the causes of failure from the physiological consequences that can quickly follow. I argue that by building integrative models that explain causal links among multiple organ systems, we can more quickly arrive at a holistic understanding of the varied challenges facing animals at extreme temperatures.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3