Remote Control of the Swimmeret Central Pattern Generator in Crayfish (Procambarus Clarkii and Pacifastacus Leniusculus): Effect of a Walking Leg Proprioceptor

Author:

CATTAERT DANIEL1,BARTHE JEAN-YVES2,NEIL DOUGLAS M.3,CLARAC FRANCOIS1

Affiliation:

1. CNRS-NBM, 31, J. Aiguier, B.P. 71, 13402 Marseille Cedex 9, France

2. CNRS-NBM, 31, J. Aiguier, B.P. 71, 13402 Marseille Cedex 9, France; Karolinska Institutet, The Nobel Institute for Neurophysiology, Box 60400, S-10401 Stockholm, Sweden.

3. Neurobiology Laboratory, Department of Zoology, University of Glasgow, Glasgow G12 8QQ, Scotland, UK

Abstract

1. An isolated preparation of the crayfish nervous system, comprising both the thoracic and the abdominal ganglia together with their nerve roots, has been used to study the influence of a single leg proprioceptor, the coxo-basal chordotonal organ (CBCO), on the fictive swimmeret beating consistently expressed in this preparation. Both mechanical stimulation of the CBCO and electrical stimulation of its nerve were used. 2. In preparations not displaying rhythmic activity, electrical or mechanical stimulations evoked excitatory postsynaptic potentials (EPSPs) in about 30 % of the studied motor neurones with a fairly short and regular delay, suggesting an oligosynaptic pathway. Such stimulation could evoke rhythmic activity in swimmeret motor nerves. The evoked swimmeret rhythm often continued for several seconds after the stimulus period. 3. When the swimmeret rhythm was well established, electrical and mechanical stimuli modified it in a number of ways. Limited mechanical or weak electrical stimuli produced a small increase in swimmeret beat frequency, while more extreme movements of the CBCO or strong electrical stimuli had a disruptive effect on the rhythm. 4. The effect of low-intensity stimulation on existing swimmeret beating was phase-dependent: it shortened the beat cycle when applied during the powerstroke phase and lengthened it when applied during the retumstroke phase. 5. Rhythmic mechanical stimulation of CBCO or electrical stimulation of the CBCO nerve entrained the swimmeret rhythm within a limited range in relative or absolute coordination. Note: To whom reprint requests should be sent.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3