The stopping response of Xenopus laevis embryos: pharmacology and intracellular physiology of rhythmic spinal neurones and hindbrain neurones

Author:

Boothby K. M.1,Roberts A.1

Affiliation:

1. Department of Zoology, University of Bristol, UK.

Abstract

1. Xenopus laevis embryos stop swimming in response to pressure on the cement gland. This behaviour and ‘fictive’ stopping are blocked by bicuculline (10 mumol 1(−1)), tubocurarine (110 mumol 1(−1)) and kynurenic acid (0.5 mmol 1(−1)). 2. Intracellular recordings from spinal neurones active during swimming have shown that pressure on the cement gland evokes compound, chloride-dependent inhibitory postsynaptic potentials (IPSPs). These are blocked by bicuculline, tubocurarine and kynurenic acid, but are unaffected by strychnine (2 mumol 1(−1)). 3. When the cement gland is pressed, trigeminal ganglion activity precedes both the IPSPs and the termination of ‘fictive’ swimming activity recorded in rhythmic spinal neurones. The trigeminal discharge is unaffected by the antagonists bicuculline, tubocurarine, kynurenic acid and strychnine. 4. Intracellular recordings from the hindbrain have revealed neurones that are normally silent, but rhythmically inhibited during ‘fictive’ swimming. In these neurones pressure on the cement gland evokes depolarising potentials, often with one or more spikes. 5. We propose that the stopping response depends on the excitation of pressure-sensitive trigeminal receptors which innervate the cement gland. These release an excitatory amino acid to excite brainstem GABAergic reticulospinal neurones, which inhibit spinal neurones to turn off the central pattern generator for swimming. There may also be a less direct pathway.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3