V-ATPase inhibition prevents recovery from anoxia in Artemia franciscana embryos: quiescence signaling through dissipation of proton gradients

Author:

Covi Joseph A.1,Treleaven W. Dale2,Hand Steven C.1

Affiliation:

1. Division of Cellular, Developmental and Integrative Biology, Department of Biological Science

2. NMR Facility, College of Basic Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

SUMMARY The metabolic downregulation critical for long-term survival of Artemia franciscana embryos under anoxia is mediated, in part, by a progressive intracellular acidification. However, very little is known about the mechanisms responsible for the pH transitions associated with exposure to, and recovery from, oxygen deprivation. In the present study, we demonstrate with 31P-NMR that incubation of intact embryos with the V-ATPase inhibitor bafilomycin A1 severely limits intracellular alkalinization during recovery from anoxia without affecting the restoration of cellular nucleotide triphosphate levels. Based on these data, it appears that oxidative phosphorylation and ATP resynthesis can only account for the first 0.3 pH unit alkalinization observed during aerobic recovery from the 1 pH unit acidification produced during 1 h of anoxia. The additional 0.7 pH unit increase requires proton pumping by the V-ATPase. Aerobic incubation with bafilomycin also suggests that V-ATPase inhibition alone is not enough to induce an acute dissipation of proton gradients under anoxia. In intact embryos, the dissipation of proton gradients and uncoupling of oxidative phosphorylation with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) leads to an intracellular acidification similar to that seen after 1 h of anoxia. Subsequent exposure to anoxia, in the continued presence of CCCP, yields little additional acidification, suggesting that proton gradients are normally dissipated under anoxia. When combined with protons generated from net ATP hydrolysis, these data show that the dissipation of proton chemical gradients is sufficient to account for the reversible acidification associated with quiescence in these embryos.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3