Frequency coding of particle motion by saccular afferents of a teleost fish

Author:

Lu Zhongmin12,Xu Zemin1,Buchser William J.1

Affiliation:

1. Department of Biology, University of Miami, 1301 Memorial Drive, Room 4, Coral Gables, FL 33146, USA

2. University of Miami Neuroscience Program, PO Box 011351, Miami, FL 33101, USA

Abstract

SUMMARYThe saccule is known to play an important role in hearing in fishes. In this study we investigated spatial frequency selectivity of single saccular afferents in a teleost fish (the sleeper goby, Dormitator latifrons) to acoustic particle motion at 50–400 Hz. Saccular afferents have similar distributions of best sensitivity (−90.0 to −54.8 dB re. 1 g, mean ± s.d.=−81.1±8.0 dB) and characteristic frequencies (≤50–400 Hz, median=80 Hz) along the longitudinal, side-to-side and dorsoventral axes of fish. They were lowpass, bandpass or broadly tuned to low frequencies with Q50% at 15 dB above threshold in ranges from 0.28 to 3.30 (1.46±0.71), 0.18 to 2.54 (1.36±0.78), and 0.41 to 4.26 (2.25±0.1.12) along the three axes, showing slightly greater frequency tuning in the vertical axis than horizontal axes. At supra threshold we found tuning plasticity, i.e. best frequencies of saccular afferents shifted to high frequencies as stimulus level increased. Isolevel rate–frequency curves were asymmetrical with shallow slopes at the low-frequency edge and steep slopes at the high-frequency edge. Saccular afferents of the sleeper goby have similar capabilities of coding particle motion frequencies in the three orthogonal axes. Results from this and other studies suggest that (1) the saccule is the major hearing organ in this species, (2) the saccule of this species is capable of encoding sound frequencies in three dimensional space, and (3) saccular afferents in fishes without accessory auditory structures exhibit similar frequency selectivity in response to particle motion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

1. Sounds from the intertidal zone: vocalizing fish;Bass;Bio-science,1990

2. Neural and behavioral mechanisms of audition;Bass,2007

3. Frequency response of saccular afferents in a teleost fish;Buchser;Soc. Neurosci. Abstr.,2003

4. The directional hearing abilities of two species of bamboo sharks;Casper;J. Exp. Biol.,2007

5. Response dynamics of goldfish saccular fibers: effects of stimulus frequency and intensity on fibers with different tuning, sensitivity, and spontaneous activity;Coombs;J. Acoust. Soc. Am.,1987

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3