Subsurface swimming and stationary diving are metabolically cheap in adult Pacific walruses (Odobenus rosmarus divergens)

Author:

Borque-Espinosa Alicia12ORCID,Rode Karyn D.3ORCID,Ferrero-Fernández Diana4ORCID,Forte Anabel5ORCID,Capaccioni-Azzati Romana1ORCID,Fahlman Andreas26ORCID

Affiliation:

1. Zoology Department, Universitat de València, 46010 Valencia, Spain

2. Fundación Oceanogràfic de la Comunitat Valenciana, 46005 Valencia, Spain

3. U.S. Geological Survey Alaska Science Center, Anchorage, AK 99508, USA

4. Avanqua Oceanogràfic S.L., 46013 Valencia, Spain

5. Statistics and Operational Research Department, Universitat de València, 46010 Valencia, Spain

6. Global Diving Research SL, 46004 Valencia, Spain

Abstract

ABSTRACT Walruses rely on sea-ice to efficiently forage and rest between diving bouts while maintaining proximity to prime foraging habitat. Recent declines in summer sea ice have resulted in walruses hauling out on land where they have to travel farther to access productive benthic habitat while potentially increasing energetic costs. Despite the need to better understand the impact of sea ice loss on energy expenditure, knowledge about metabolic demands of specific behaviours in walruses is scarce. In the present study, 3 adult female Pacific walruses (Odobenus rosmarus divergens) housed in professional care participated in flow-through respirometry trials to measure metabolic rates while floating inactive at the water surface during a minimum of 5 min, during a 180 s stationary dive, and while swimming ∼90 m horizontally underwater. Metabolic rates during stationary dives (3.82±0.56 l O2 min−1) were lower than those measured at the water surface (4.64±1.04 l O2 min−1), which did not differ from rates measured during subsurface swimming (4.91±0.77 l O2 min−1). Thus, neither stationary diving nor subsurface swimming resulted in metabolic rates above those exhibited by walruses at the water surface. These results suggest that walruses minimize their energetic investment during underwater behaviours as reported for other marine mammals. Although environmental factors experienced by free-ranging walruses (e.g. winds or currents) likely affect metabolic rates, our results provide important information for understanding how behavioural changes affect energetic costs and can be used to improve bioenergetics models aimed at predicting the metabolic consequences of climate change on walruses.

Funder

U.S. Geological Survey

Fundación Oceanogràfic de la Comunitat Valenciana

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3