Regulators specifying cell fate activate cell cycle regulator genes to determine cell numbers in ascidian larval tissues

Author:

Kobayashi Kenji1ORCID,Tokuoka Miki12ORCID,Sato Hiroaki1,Ariyoshi Manami3,Kawahara Shiori3,Fujiwara Shigeki3ORCID,Kishimoto Takeo1ORCID,Satou Yutaka2ORCID

Affiliation:

1. Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology 1 , Yokohama 226-8501 , Japan

2. Graduate School of Science, Kyoto University 2 Department of Zoology , , Kyoto 606-8502 , Japan

3. Faculty of Science and Technology, Kochi University 3 Department of Chemistry and Biotechnology , , Kochi 780-8520 , Japan

Abstract

ABSTRACT In animal development, most cell types stop dividing before terminal differentiation; thus, cell cycle control is tightly linked to cell differentiation programmes. In ascidian embryos, cell lineages do not vary among individuals, and rounds of the cell cycle are determined according to cell lineages. Notochord and muscle cells stop dividing after eight or nine rounds of cell division depending on their lineages. In the present study, we showed that a Cdk inhibitor, Cdkn1.b, is responsible for stopping cell cycle progression in these lineages. Cdkn1.b is also necessary for epidermal cells to stop dividing. In contrast, mesenchymal and endodermal cells continue to divide even after hatching, and Myc is responsible for maintaining cell cycle progression in these tissues. Expression of Cdkn1.b in notochord and muscle is controlled by transcription factors that specify the developmental fate of notochord and muscle. Likewise, expression of Myc in mesenchyme and endoderm is under control of transcription factors that specify the developmental fate of mesenchyme and endoderm. Thus, cell fate specification and cell cycle control are linked by these transcription factors.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3