Affiliation:
1. Environmental Biology, School of Earth and Environmental Sciences,The University of Adelaide, Adelaide, SA, Australia 5005
Abstract
SUMMARYSemi-fossorial animals (burrowing surface foragers) need to balance the competing morphological requirements of terrestrial and burrowing locomotion. These species rarely show the same degree of claw, forelimb and pectoral girdle structural development that fully fossorial forms (burrowing subterranean foragers) do, but nevertheless invest considerable amounts of energy in burrow systems. The compromise between terrestrial and burrowing locomotion was investigated by measuring net costs of burrowing and pedestrian transport in the spinifex hopping mouse, Notomys alexis, a species that forages in open areas in arid environments and is adapted for saltatorial locomotion. The net cost of transport by burrowing of hopping mice was found to be more expensive than for specialised fossorial species, and burrows were estimated to represent an energy investment equivalent to the terrestrial locomotion expected to be incurred in 17-100 days. A phylogenetically independent-contrasts approach revealed that morphological specialisation for burrowing was associated with low maximum running speeds in fossorial mammals and, for non-fossorial rodents and marsupials, maximum running speed was positively correlated with an index of habitat structure that ranged from arboreal to open desert. The high terrestrial speeds attainable by this semi-fossorial species by saltatory locomotion apparently outweigh the energetic savings that would be associated with burrowing specialisation.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献