Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos

Author:

Salaün Patrick1,Boulben Sandrine1,Mulner-Lorillon Odile1,Bellé Robert1,Sonenberg Nahum2,Morales Julia1,Cormier Patrick1

Affiliation:

1. Station Biologique de Roscoff, Cycle Cellulaire et Développement, Unité Mer et Santé (UMR 7150), Université Pierre et Marie Curie (EI 37), Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences de l'Univers (INSU), BP 74, 29682 Roscoff Cedex, France

2. Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec H3G1Y6, Canada

Abstract

The eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) inhibit translation initiation by binding eIF4E and preventing recruitment of the translation machinery to mRNA. We have previously shown that fertilization of sea urchin eggs triggers eIF4E–4E-BP complex dissociation and 4E-BP degradation. Here, we show that microinjection of eIF4E-binding motif peptide into unfertilized eggs delays the onset of the first mitosis triggered by fertilization, demonstrating that dissociation of the eIF4E–4E-BP complex is functionally important for the first mitotic division in sea urchin embryos. We also show by gel filtration analyses that eIF4E is present in unfertilized eggs as an 80 kDa molecular mass complex containing 4E-BP and a new 4E-BP of 40 kDa. Fertilization triggers the dissociation of eIF4E from these two 4E-BPs and triggers the rapid recruitment of eIF4E into a high-molecular-mass complex. Release of eIF4E from the two 4E-BPs is correlated with a decrease in the total level of both 4E-BPs following fertilization. Abundance of the two 4E-BPs has been monitored during embryonic development. The level of the two proteins remains very low during the rapid cleavage stage of early development and increases 8 hours after fertilization. These results demonstrate that these two 4E-BPs are down- and upregulated during the embryonic development of sea urchins. Consequently, these data suggest that eIF4E availability to other partners represents an important determinant of the early development of sea urchin embryos.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3