Automated 3D light-sheet screening with high spatiotemporal resolution reveals mitotic phenotypes

Author:

Eismann Björn12,Krieger Teresa G.123,Beneke Jürgen24,Bulkescher Ruben24,Adam Lukas12,Erfle Holger24,Herrmann Carl15,Eils Roland12367,Conrad Christian127ORCID

Affiliation:

1. Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany

2. Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany

3. Digital Health Center, Berlin Institute of Health (BIH)/Charité-Universitätsmedizin Berlin, Berlin, Germany

4. Advanced Biological Screening Facility Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany

5. Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, Heidelberg, Germany

6. Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB) Heidelberg University, Heidelberg, Germany

7. Heidelberg Center for Personalized Oncology, DKFZ-HIPO, DKFZ, Heidelberg, Germany

Abstract

3D cell cultures enable the in vitro study of dynamic biological processes such as the cell cycle, but their use in high-throughput screens remains impractical with conventional fluorescent microscopy. Here, we present a screening workflow for the automated evaluation of mitotic phenotypes in 3D cell cultures by light-sheet microscopy. After sample preparation by a liquid handling robot, cell spheroids are imaged for 24 hours in toto with a dual-view inverted selective plane illumination microscope (diSPIM) with a much improved signal-to-noise ratio, higher imaging speed, isotropic resolution and reduced light exposure compared to a spinning disc confocal microscope. A dedicated high-content image processing pipeline implements convolutional neural network based phenotype classification. We illustrate the potential of our approach by siRNA knock-down and epigenetic modification of 28 mitotic target genes for assessing their phenotypic role in mitosis. By rendering light-sheet microscopy operational for high-throughput screening applications, this workflow enables target gene characterization or drug candidate evaluation in tissue-like 3D cell culture models.

Funder

Bundesministerium für Bildung und Forschung

Helmholtz Association

Publisher

The Company of Biologists

Subject

Cell Biology

Reference41 articles.

1. Deep learning for computational biology;Angermueller;Mol. Syst. Biol.,2016

2. Positive feedback keeps duration of mitosis temporally insulated from upstream cell-cycle events;Araujo;Mol. Cell,2016

3. KNIME - The Konstanz information miner;Berthold;ACM SIGKDD Explor. Newsl.,2009

4. Microscopy-based high-content screening;Boutros;Cell,2015

5. Random forests;Breiman;Mach. Learn.,2001

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3