Adenosinergic modulation of neuronal activity in the pond snail Lymnaea stagnalis

Author:

Malik Aqsa1,Buck Leslie Thomas12

Affiliation:

1. Department of Cell and Systems Biology, University of Toronto, ON, Canada

2. Department of Ecology and Evolutionary Biology, University of Toronto, ON, Canada

Abstract

SUMMARY Adenosine has been termed a retaliatory metabolite and its neuroprotective effects have been implicated in the hypoxia tolerance of several species; however, its role in the invertebrate CNS remains unclear. To determine if adenosine modulates neuronal activity in invertebrate neurons, we conducted whole-cell recordings from neurons in the central ring ganglia of the anoxia-tolerant pond snail Lymnaea stagnalis during exposure to adenosine and pharmacological compounds known to modulate the type I subclass of adenosine receptors (A1R). Action potential (AP) frequency and membrane potential (Vm) were unchanged under control conditions, and addition of adenosine decreased AP frequency by 47% (from 1.08±0.22 to 0.57±0.14 Hz) and caused significant hyperpolarization of Vm. The A1R agonist cyclopentyladenosine (CPA) mimicked the results obtained with adenosine whereas antagonism of the A1R with 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) had no effect on AP frequency or Vm but prevented the adenosine and CPA-mediated decreases in neuronal activity. Furthermore, Ca2+ measurements with fluo-4 revealed that A1R activation led to a 12% increase in intracellular Ca2+ concentration and this elevation was also antagonized by DPCPX. Our results suggest that adenosine acting via the adenosine receptor (type I subclass) depresses neuronal activity in the adult L. stagnalis CNS and this depression is correlated with an increase in cytosolic Ca2+ levels.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3