Multisite phosphorylation of Erk5 in mitosis

Author:

DÍaz-RodrÍguez Elena1,Pandiella Atanasio1

Affiliation:

1. Instituto de BiologÍa Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, 37007-Salamanca, Spain

Abstract

The MAP kinase Erk5 plays important roles in cellular proliferation, and has recently been implicated in the regulation of mitosis. The classic pathway of Erk5 activation involves dual phosphorylation at its TEY microdomain by the upstream regulating kinase MEK5. Here we describe a second pathway that controls Erk5 phosphorylation. This pathway is activated in mitotic cells and involves kinase activities distinct from MEK5. Studies aimed at identifying these kinases suggested that CDK1 activity is required to sustain Erk5 phosphorylation in mitosis, as treatment with RO3306, a CDK1 inhibitor, reversed mitotic phosphorylation of Erk5. Moreover, CDK1 co-precipitated with Erk5 in mitotic cells. The mitotic phosphorylation of Erk5 occurs at multiple sites located at its unique C-terminal region, within an Erk5 subdomain that has formerly been implicated in the control of the subcellular location of Erk5. Furthermore, molecular studies indicated that phosphorylation at these sites may participate in the control of the transit of Erk5 between the cytosol and the nucleus, in addition to regulating its transcriptional activity. Together, our results demonstrate the existence of a second Erk5 phosphorylation pathway, that is activated in mitosis, and that may participate in the regulation of Erk5 functions.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3