Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle

Author:

Min Guangwei1,Zhou Ge1,Schapira Matthieu1,Sun Tung-Tien2,Kong Xiang-Peng1

Affiliation:

1. Structural Biology Program, Skirball Institute of Biomolecular Medicine, Departments of 1Biochemistry, New York University School of Medicine, New York, NY 10016, USA

2. Dermatology, 2Pharmacology and 2Urology, 2Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, NY 10016, USA

Abstract

The apical surface of terminally differentiated mammalian urothelial umbrella cells is covered by numerous plaques consisting of two-dimensional (2D) crystals of hexagonally packed 16 nm uroplakin particles, and functions as a remarkable permeability barrier. To determine the structural basis of this barrier function, we generated, by electron cryo microscopy, a projection map of the isolated mouse urothelial plaques at 7 Å and a 3D structure at 10 Å resolution. Our results indicate that each 16 nm particle has a central 6 nm lipid-filled `hole' surrounded by 6 inverted U-shaped subunits, each consisting of an inner and an outer subdomain connected via a distal joint. The transmembrane portion of each subdomain can fit about 5 helices. This finding, coupled with our STEM and EM data, suggests that uroplakin pairs Ia/II and Ib/III are associated with the inner and outer subdomains, respectively. Since the inner subdomains interconnect to form a ring, which can potentially segregate the lipids of the central hole from those outside, the 2D crystalline uroplakin network may impose an organized state and a severely restricted freedom of movement on the lipid components, thus reducing membrane fluidity and contributing to the barrier function of urothelial plaques. Our finding that distinct uroplakin substructures are in contact with the cytoplasmic and exoplasmic leaflets of the plaque suggests that the two leaflets may have different lipid composition and contribute asymmetrically to the barrier function. We propose that the crystalline lattice structure of uroplakin, through its interactions with specialized lipids, plays a major role in the remarkable permeability barrier function of urothelial apical surface. Our results also have implications for the transmembrane signal transduction in urothelial cells as induced by the binding of uropathogenic E. coli to its uroplakin receptor.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3