Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor

Author:

Meng Fanjie1,Sachs Frederick1

Affiliation:

1. Center for Single Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA

Abstract

Mechanical forces are ubiquitous modulators of cell activity but little is known about the mechanical stresses in the cell. Genetically encoded FRET-based force sensors now allow the measurement of local stress in specific host proteins in vivo in real time. For a minimally invasive probe, we designed one with a mechanical compliance matching that of many common cytoskeleton proteins. sstFRET is a cassette composed of Venus and Cerulean linked by a spectrin repeat. The stress sensitivity of the probe was measured in solution using DNA springs to push the donor and acceptor apart with 5–7 pN and this produced large changes in FRET. To measure cytoskeletal stress in vivo we inserted sstFRET into α-actinin and expressed it in HEK and BAEC cells. Time-lapse imaging showed the presence of stress gradients in time and space, often uncorrelated with obvious changes in cell shape. The gradients could be rapidly relaxed by thrombin-induced cell contraction associated with inhibition of myosin II. The tension in actinin fluctuated rapidly (scale of seconds) illustrating a cytoskeleton in dynamic equilibrium. Stress in the cytoskeleton can be driven by macroscopic stresses applied to the cell. Using sstFRET as a tool to measure internal stress, we tested the prediction that osmotic pressure increases cytoskeletal stress. As predicted, hypotonic swelling increased the tension in actinin, confirming the model derived from AFM. Anisotonic stress also produced a novel transient (~2 minutes) decrease in stress upon exposure to a hypotonic challenge, matched by a transient increase with hypertonic stress. This suggests that, at rest, the stress axis of actinin is not parallel to the stress axis of actin and that swelling can reorient actinin to lie more parallel where it can absorb a larger fraction of the total stress. Protein stress sensors are opening new perspectives in cell biology.

Publisher

The Company of Biologists

Subject

Cell Biology

Reference28 articles.

1. Thermal stabilities of brain spectrin and the constituent repeats of subunits;An;Biochemistry,2006

2. Molecular mechanisms of thrombin-induced endothelial cell permeability;Bogatcheva;Biochemistry,2002

3. Mechanical processes in biochemistry;Bustamante;Annu. Rev. Biochem.,2004

4. Targeted disruption of vinculin genes in F9 and embryonic stem cells changes cell morphology, adhesion, and locomotion;Coll;Proc. Natl. Acad. Sci. USA,1995

5. Exploring the energy landscape of GFP by single-molecule mechanical experiments;Dietz;Proc. Natl. Acad. Sci. USA,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3