Cell fate respecification and cell division orientation drive intercalary regeneration in Drosophila wing discs

Author:

Repiso Ada1,Bergantiños Cora1,Serras Florenci1

Affiliation:

1. Departament de Genètica, Facultat de Biologia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain.

Abstract

To understand the cellular parameters that govern Drosophila wing disc regeneration, we genetically eliminated specific stripes of the wing disc along the proximodistal axis and used vein and intervein markers to trace tissue regeneration. We found that veins could regenerate interveins and vice versa, indicating respecification of cell fates. Moreover, respecification occurred in cells close to the wound. The newly generated domains were intercalated to fill in the missing parts. This intercalation was driven by increased proliferation, accompanied by changes in the orientation of the cell divisions. This reorientation depended on Fat (Ft) and Crumbs (Crb), which acted, at least partly, to control the activity of the effector of the Hippo pathway, Yorkie (Yki). Increased Yki, which promotes proliferation, affected the final shape and size. Heterozygous ft or crb, which normally elicit size and shape defects in regenerated wings, could be rescued by yki heterozygosity. Thus, Ft and Crb act as sensors to drive cell orientation during intercalary regeneration and control Yki levels to ensure a proper balance between proliferation and cell reorientation. We propose a model based on intercalation of missing cell identities, in which a coordinated balance between orientation and proliferation is required for normal organ shape and size.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3