A method for deriving displacement data during cyclical movement using an inertial sensor

Author:

Pfau Thilo1,Witte Thomas H.1,Wilson Alan M.12

Affiliation:

1. Structure and Motion Laboratory, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK

2. Structure and Motion Laboratory, Royal National Orthopaedic Hospital,Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK

Abstract

SUMMARY Biomechanical studies often employ optical motion capture systems for the determination of the position of an object in a room-based coordinate system. This is not ideal for many types of study in locomotion since only a few strides may be collected per `trial', and outdoor experiments are difficult with some systems. Here, we report and evaluate a novel approach that enables the user to determine linear displacements of a proprietary orientation sensor during cyclical movement. This makes experiments outside the constraints of the laboratory possible, for example to measure mechanical energy fluctuations of the centre of mass during over-ground locomotion. Commercial orientation sensors based on inertial sensing are small and lightweight and provide a theoretical framework for determining position from acceleration. In practice,the integration process is difficult to implement because of integration errors, integration constants and the necessity to determine the orientation of the measured accelerations. Here, by working within the constraints of cyclical movements, we report and evaluate a method for determining orientation and relative position using a modified version of a commercial inertial orientation sensor that combines accelerometers, gyroscopes and magnetometers, thus giving a full set of movement parameters (displacement,velocity and acceleration in three dimensions). The 35 g sensor was attached over the spine of a horse exercising on a treadmill. During canter locomotion(9.0 m s-1), the amplitudes of trunk movement in the x(craniocaudal), y (mediolateral) and z (dorsoventral)directions were 99.6, 57.9 and 140.2 mm, respectively. Comparing sensor displacement values with optical motion capture values for individual strides,the sensor had a median error (25th, 75th percentile) in the x, y and z directions of 0.1 (–9.7, +10.8), –3.8(–15.5, +13.7) and –0.1 (–6.3, +7.1) mm, respectively. High-pass filtering of the displacement data effectively separated non-cyclical from cyclical components of the movement and reduced the interquartile ranges of the errors considerably to (–3.6, 6.2),(–4.0, 3.8) and (–4.5, 5.1) for x, y and z displacement, respectively, during canter locomotion. This corresponds to (–3.2, 5.5)%, (–6.7, 6.3)% and (–3.3, 3.7)%of the range of motion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3