The SH4-Unique-SH3-SH2 domains dictate specificity in signaling that differentiate c-Yes from c-Src

Author:

Summy Justin M.1,Qian Yong2,Jiang Bing-Hua1,Guappone-Koay Anne1,Gatesman Amanda1,Shi Xianglin2,Flynn Daniel C.1

Affiliation:

1. Department of Microbiology, Immunology, and Cell Biology, and Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, PO Box 9300, Morgantown, WV 26506, USA

2. National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, Health Effects Laboratory Division, Morgantown, WV 26505, USA

Abstract

c-Src and c-Yes are highly homologous members of the Src family of non-receptor tyrosine kinases. The overall sequence similarity between c-Src and c-Yes allows them to perform many overlapping functions. However, the phenotypes of the c-src and c-yes knockout mice, and cells derived from them, are quite different, indicating functional specificity between the two proteins. Specifically, c-src-/- cells are deficient in several processes that require dynamic regulation of the actin cytoskeleton. In order to begin to understand why c-Yes is unable to compensate for c-Src signaling, we used a series of Src/Yes chimeras in which the non-catalytic functional domains of Src527F were replaced by those of c-Yes. Using chicken embryo fibroblasts as a model system, our results indicate that the c-Yes N-terminal SH4-Unique domains are sufficient to inhibit the ability of Src527F to alter cell morphology, induce actin filament rearrangements or stimulate motility or invasive potential. The data also indicate that the SH4-Unique-SH3-SH2 domains of c-Yes work cooperatively and prevent activation of signaling proteins associated with Src527F transformation, including activation of phosphatidylinositol 3-kinase, phosphorylation of c-Raf and Akt and downregulation of RhoA-GTP. These data indicate that c-Yes may not modulate signals associated with c-Src-induced changes in actin filament integrity and may explain why c-Yes fails to compensate for c-Src signaling in src-/- cells.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3