The AP3 adaptor is involved in the transport of membrane proteins to acidocalcisomes of Leishmania

Author:

Besteiro Sébastien1,Tonn Daniela1,Tetley Laurence1,Coombs Graham H.1,Mottram Jeremy C.1

Affiliation:

1. Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK

Abstract

Lysosomal function is crucial for the differentiation and infectivity of the parasitic protozoon Leishmania major. To study lysosomal biogenesis, an L. major mutant deficient in the δ subunit of the adaptor protein 3 (AP3 δ) complex was generated. Structure and proteolytic capacity of the lysosomal compartment were apparently unaffected in the AP3-deficient mutant; however, defects were identified in its acidocalcisomes. These are acidic organelles enriched in calcium and phosphorus, conserved from bacteria to eukaryotes, whose function remains enigmatic. The acidocalcisomes of the L. major mutant lacked membrane-bound proton pumps (notably V-H+-PPase), were less acidic than normal acidocalcisomes and devoid of polyphosphate, but contained a soluble pyrophosphatase. The mutant parasites were viable in vitro, but were unable to establish an infection in mice, which indicates a role for AP3 in determining – possibly through an acidocalcisome-related function – the virulence of the parasite. AP3 transport function has been linked previously to lysosome-related organelles such as platelet dense granules, which appear to share several features with acidocalcisomes. Our findings, implicating that AP3 has a role in transport to acidocalcisomes, thus provide further evidence that biogenesis of acidocalcisomes resembles that of lysosome-related organelles, and that both may have conserved origins.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3