A model for kinesin movement from nanometer-level movements of kinesin and cytoplasmic dynein and force measurements

Author:

KUO SCOT C.1,GELLES JEFF1,STEUER ERIC1,SHEETZ MICHAEL P.1

Affiliation:

1. Department of Cell Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA

Abstract

Summary Our detailed measurements of the movements of kinesin- and dynein-coated latex beads have revealed several important features of the motors which underlie basic mechanical aspects of the mechanisms of motor movements. Kinesin-coated beads will move along the paths of individual microtubule protofilaments with high fidelity and will pause at 4nm intervals along the microtubule axis under low ATP conditions. In contrast, cytoplasmic dynein-coated beads move laterally across many protofilaments as they travel along the microtubule, without any regular pauses, suggesting that the movements of kinesin-coated beads are not an artefact of the method. These kinesin bead movements suggest a model for kinesin movement in which the two heads walk along an individual protofilament in a hand-over-hand fashion. A free head would only be able to bind to the next forward tubulin subunit on the protofilament and its binding would pull off the trailing head to start the cycle again. This model is consistent with the observed cooperativity between the heads and with the movement by single dimeric molecules. Several testable predictions of the model are that kinesin should be able to bind to both alpha and beta tubulin and that the length of the neck region of the molecule should control the off-axis motility. In this article, we describe the technology for measuring nanometer-level movements and the force generated by the kinesin molecule.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3