Undulating fins produce off-axis thrust and flow structures

Author:

Neveln Izaak D.1,Bale Rahul1,Bhalla Amneet P. S.1,Curet Oscar M.2,Patankar Neelesh A.1,Maciver Malcolm A.1

Affiliation:

1. Northwestern University, USA;

2. Florida Atlantic University, USA

Abstract

Summary While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely-swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward, and vertical swimming capabilities of knifefish and also have potential applications in the design of more maneuverable underwater vehicles. We present the flow structure of an undulating robotic fin model using particle image velocimetry to measure fluid velocity fields in the wake. We supplement the experimental robotic work with high-fidelity computational fluid dynamics, simulating the hydrodynamics of both a virtual fish whose fin kinematics and fin plus body morphology are measured from a freely-swimming knifefish as well as a virtual rendering of our robot. Our results indicate a series of linked vortex tubes is shed off the long edge of the fin as the undulatory wave travels lengthwise along the fin. A jet at an oblique angle to the fin is associated with the successive vortex tubes, propelling the fish forward. The vortex structure bears similarity to the linked vortex ring structure trailing the oscillating caudal fin of a carangiform swimmer, though the vortex rings are distorted due to the undulatory kinematics of the elongated fin.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference58 articles.

1. Oscillating foils of high propulsive efficiency;Anderson;J. Fluid Mech.,1998

2. Efficient management of parallelism in object oriented numerical software libraries;Balay,1997

3. Balay S., Buschelman K., Gropp W. D., Kaushik D., Knepley M. G., McInnes L. C., Smith B. F., Zhang H. (2009). PETSc. Portable, extensible toolkit for scientific computation. Available at http://www.mcs.anl.gov/petsc.

4. A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies;Bhalla;J. Comput. Phys.,2013

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3