The globby1-1 (glo1-1) mutation disrupts nuclear and cell division in the developing maize seed causing alterations in endosperm cell fate and tissue differentiation

Author:

Costa Liliana M.1,Gutierrez-Marcos Jose F.1,Brutnell Thomas P.2,Greenland Andrew J.3,Dickinson Hugh G.1

Affiliation:

1. Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK

2. Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853,USA

3. Syngenta, Jealott's Hill, Bracknell RG12 6EY, UK

Abstract

Cereal endosperm tissues account for most of the world's calorific intake,yet the regulation of monocot seed development remains poorly understood. The maize endosperm originates with a series of free-nuclear divisions, followed by cellularisation and subsequent formation of a range of functional cellular domains. We describe the isolation and characterisation of a mutation that induces aberrant globular embryo and endosperm morphology, globby1-1(glo1-1). Our data indicate that glo1-1 plays a role in nuclear division and cytokinesis in the developing seed. Pattern formation in the embryo is severely impaired with development arresting at premature stages, while in the endosperm, the effects of the glo1-1 mutation are manifest at the free-nuclear or syncytial stage. During cellularisation,and at later stages of development, aberrant cell division and localised domains of cell proliferation are apparent in glo1-1 endosperms. As a consequence, cell fate acquisition and subsequent differentiation of endosperm tissues are affected to varying degrees of severity. To date, it has been hypothesised that BETL cell fate is specified in the syncytium and that cell files subsequently develop in response to a gradient of signal(s) derived from the maternal pedicel region. Based on our findings, however, we propose that specification of BETL cells is an irreversible event that occurs within a narrow window of syncytial development, and that BETL cell identity is subsequently inherited in a lineage-dependent manner. Additionally, our data suggest that acquisition of aleurone cell fate does not solely rely upon signalling from the maternal surrounding tissue to the periphery of the endosperm, as previously thought, but that other factor(s) present within the endosperm are involved.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3