Affiliation:
1. Carnegie Institute of Washington, Department of Embryology, Baltimore, MD 21210.
Abstract
A family of muscle-specific helix-loop-helix transcription factors (myoD, myogenin, myf-5 and MRF4) has been implicated in the control of vertebrate skeletal myogenesis. Searches for homologues of this family in Caenorhabditis elegans identified a single family member, hlh-1, which is expressed in striated muscles and their clonal precursors. We have isolated a null allele of hlh-1 following chemical mutagenesis. Animals homozygous for the null mutation produce contractile body-wall muscles, although muscle contractions are weak and coordination is defective. In addition to the evident muscle defects, mutant animals fail to complete embryonic elongation and die as larvae or young adults. Ultrastructural analysis of the mutant muscle reveals an apparently normal local lattice of thick and thin filaments, with more global defects in sarcomere organization and muscle cell placement. Mosaic studies using the point mutation and an extrachromosomal transgene indicate that the requirement for hlh-1 is fully zygotic, with no maternal hlh-1 requirement for either muscle development or viability.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献