Antagonistic activities of Suppressor of Hairless and Hairless control alternative cell fates in the Drosophila adult epidermis

Author:

Schweisguth F.1,Posakony J.W.1

Affiliation:

1. Department of Biology and Center for Molecular Genetics, University of California San Diego, La Jolla 92093-0322.

Abstract

Successive alternative cell fate choices in the imaginal disc epithelium lead to the differentiation of a relatively invariant pattern of multicellular adult sensory organs in Drosophila. We show here that the activity of Suppressor of Hairless is required for both the sensory organ precursor (SOP) versus epidermal cell fate decision, and for the trichogen (shaft) versus tormogen (socket) cell fate choice. Complete loss of Suppressor of Hairless function causes most proneural cluster cells to accumulate high levels of the achaete and Delta proteins and to adopt the SOP fate. Late or partial reduction in Suppressor of Hairless activity leads to the apparent transformation of the tormogen (socket) cell into a second trichogen (shaft) cell, producing a ‘double shaft’ phenotype. We find that overexpression of Suppressor of Hairless has the opposite phenotypic effects. SOP determination is prevented by an early excess of Suppressor of Hairless activity, while at a later stage, the trichogen (shaft) cell is transformed into a second tormogen (socket) cell, resulting in ‘double socket’ bristles. We conclude that, for two different cell fate decisions in adult sensory organ development, decreasing or increasing the level of Suppressor of Hairless function confers mutant phenotypes that closely resemble those associated with gain and loss of Hairless activity, respectively. These results, along with the intermediate SOP phenotype observed in Suppressor of Hairless; Hairless double mutant imaginal discs, suggest that the two genes act antagonistically to commit imaginal disc cells stably to alternative fates.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3