The mouse tissue plasminogen activator gene 5′ flanking region directs appropriate expression in development and a seizure-enhanced response in the CNS

Author:

Carroll P.M.1,Tsirka S.E.1,Richards W.G.1,Frohman M.A.1,Strickland S.1

Affiliation:

1. Department of Pharmacology, University Medical Center at Stony Brook, New York 11794-8651.

Abstract

Tissue plasminogen activator (t-PA) is a secreted serine protease implicated in multiple aspects of development. In the adult rat brain, transcription of t-PA is an immediate-early response in the hippocampus following treatments that induce neuronal plasticity. To study the sequence elements that govern transcription of this gene, in situ analysis was used to define t-PA's temporal and spatial expression pattern in midgestation embryos. Transgenic mice were then generated carrying t-PA 5′ flanking sequences linked to the E. coli lacZ gene. Constructs containing 4 kb of the flanking sequences (4.0TAMGAL) confer beta-galactosidase activity mostly to the same tissues that exhibit high levels of t-PA mRNA by in situ analysis. In 4.0TAMGAL embryos from embryonic day 8.5 (E8.5) to 13.5 (E13.5), the majority of expression observed is localized to neural ectoderm-derived tissues. beta-galactosidase activity is first detected in restricted neuromeres in the midbrain and diencephalon, at E8.5 and E9.5 respectively. At E10.5, transgene expression is observed in neural crest-derived cranial nerves and dorsal root ganglia, but not placode-derived cranial nerves. From E10.5 to E13.5, beta-galactosidase activity is observed in postmitotic neurons of the midbrain, spinal cord, neural retina and the developing olfactory system. beta-galactosidase activity is also detected in areas undergoing tissue remodeling such as the pinna of the ear, whisker follicles and the limbs. In adult mice, lacZ is expressed in the hippocampus and this expression was found to be enhanced upon seizure in the giant pyramidal neurons of CA3. These results reinforce the concept that t-PA plays a role in neurogenesis and morphogenesis, and identifies the promoter region that directs its transcriptional regulation both in development and in the CNS.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3