Affiliation:
1. Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461.
Abstract
The copulatory structure of the C. elegans male tail includes a set of nine bilaterally symmetrical pairs of sense organs known as rays. Each ray comprises three cells, which are generated by a stereotyped cell sublineage expressed by 18 epidermal ray precursor cells. A pattern formation mechanism in the epidermis guides the specification of morphogenetic differences between the rays necessary for correct organelle assembly at specific positions within the epidermis. Expression of these ray differences was altered in mutations we described previously, resulting in displaced and fused rays. Here we show that two genes of the C. elegans HOM-C/Hox gene complex play a role in the pattern formation mechanism. Increasing or decreasing the gene dosage of mab-5, an Antennapedia homolog, and egl-5, an Abdominal B homolog, results in displacement and fusion of specific rays. These changes are interpreted as anterior or posterior transformations in ray identities. Mutations in the genes previously described are dominant modifiers of these effects. This suggests that these genes act in the same morphogenetic pathway as mab-5 and egl-5. Several lines of evidence, including cell ablation experiments, argue that the identity of each ray is specified cell-autonomously in the terminal cells of the ray lineages. mab-5 and egl-5, therefore, specify the morphogenetic properties of differentiating cells, without change in cell lineage or apparent cell type. Modifier genes may act upstream of mab-5 and egl-5 to regulate their expression. Alternatively, they may act at the same step in the pathway, as cofactors, or they may be target genes. Target genes could include genes specifying cell recognition and adhesion molecules governing ray organelle assembly.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献