Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis

Author:

Cusella-De Angelis M.G.1,Molinari S.1,Le Donne A.1,Coletta M.1,Vivarelli E.1,Bouche M.1,Molinaro M.1,Ferrari S.1,Cossu G.1

Affiliation:

1. Institute of Histology and Embryology, University of Rome La Sapienza, Italy.

Abstract

Embryonic and fetal skeletal myoblasts were grown in culture in the presence of TGF beta. Under the conditions employed, TGF beta inhibited differentiation of fetal but not of embryonic myoblasts. To investigate the possible relevance of these data to skeletal muscle histogenesis in vivo, we studied the proliferation/differentiation state of mesodermal cells in the proximal region of the limb bud at the time of primary fiber formation. BrdU labeling and immunostaining for myosin heavy chains revealed that very few mesodermal cells enter the S phase of the cycle when differentiated primary fibers first appear. However, a few hours later, many cells in S phase surround newly formed muscle fibers, suggesting that the latter may be a source of mitogens for undifferentiated myoblasts. Co-culture experiments supported this hypothesis, showing that medium conditioned by fiber-containing explants can stimulate myoblast proliferation. Taken together these data suggested a possible mechanism for the regulation of muscle fiber formation. The model assumes that fibers form in the proximal region of the limb bud, where TGF beta is known to be present, and BrdU labeling experiments did not reveal cells in S phase. It is conceivable that non-dividing embryonic myoblasts (which do not respond to TGF beta) can undergo differentiation, while fetal myoblasts are inhibited by TGF beta. Once formed, primary fibers may stimulate a new wave of proliferation in fetal myoblasts, in order to expand the pool of cells needed to form secondary fibers.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3