TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro

Author:

Sanvito F.1,Herrera P.L.1,Huarte J.1,Nichols A.1,Montesano R.1,Orci L.1,Vassalli J.D.1

Affiliation:

1. Department of Morphology, University of Geneva Medical School, Switzerland.

Abstract

Pancreatic rudiments from E12.5 mouse embryos undergo extensive development and differentiation when cultured in three-dimensional gels of extracellular matrix proteins for up to 12 days. Whereas collagen gels promote the formation of numerous exocrine acini and relatively small clusters of endocrine cells, in basement membrane (EHS) matrices the development of endocrine cells is dramatically favoured over that of acinar tissue. Buds embedded in a collagen gel contiguous to an EHS gel also fail to develop acini, suggesting the involvement of diffusible factor(s). Addition of cytokines to cultures of pancreatic buds in collagen gels modifies the relative proportions of the epithelial components of the gland. In the presence of EGF the proportion of the tissue occupied by ducts overrides that of acinar structures, whereas the endocrine portion of the tissue is not significantly modified. TGF-beta 1 partially mimicks the effect of EHS matrix in inhibiting the development of acinar tissue without decreasing the amount of ducts and mesenchyme; TGF-beta 1 also promotes the development of endocrine cells, in particular of insulin-containing beta cells and of cells expressing genes of the PP-fold family. These results show that cytokines can modulate the development of the pancreas and suggest a role for TGF-beta 1 in regulating the balance between the acinar and endocrine portions of the gland in vivo. More generally, they are compatible with the notion that, during organogenesis, cytokines act as paracrine factors responsible for the development and maintenance of appropriate proportions of different tissue constituents.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3