Apoptosis during macrophage-dependent ocular tissue remodelling

Author:

Lang R.1,Lustig M.1,Francois F.1,Sellinger M.1,Plesken H.1

Affiliation:

1. Skirball Institute for Biomolecular Medicine, Developmental Biology and Genetics, New York University Medical Center, NY 10016.

Abstract

We have characterized the nature and pattern of cell death during regression of the pupillary membrane, a developmentally transient capillary network found in the anterior chamber of the eye. This analysis has revealed that the cellular components of the pupillary membrane include vascular endothelial cells in an intricate network of fine capillaries as well as attendant macrophages. The capillaries are situated on the anterior surface of the lens and held in relative position by a cobweb-like meshwork of extracellular matrix fibres that regress along with the cellular components of this structure. Cell death during regression of the pupillary membrane is characteristic of apoptosis. Specifically, apoptotic bodies containing condensed chromatin can be observed in vascular endothelial cells and genomic DNA isolated from the pupillary membrane shows the nucleosomal fragmentation pattern typical of apoptotic cells. Using a method for labelling fragmented DNA in tissue preparations (TUNEL), we have assessed the overall pattern of apoptotic cell death during pupillary membrane regression. We find that apoptosis occurs either in single cells in healthy vessels or synchronously along the entire length of a capillary segment. Both morphological and TUNEL analysis indicate that capillary regression occurs from junction to junction one segment at a time. We propose a model to explain the pattern of capillary regression observed and conclude from these and previous experiments (Lang and Bishop (1993) Cell 74, 453–462), that during regression of the pupillary membrane, the macrophage elicits target cell death by inducing apoptosis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3