Affiliation:
1. Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Germany.
Abstract
The secreted glycoproteins encoded by Wnt genes are thought to function as intercellular signaling molecules which convey positional information. Localized expression of Wingless protein is required to specify the fate of ventral cells in the developing Drosophila leg. We report here that Wingless acts through inactivation of the shaggy/zeste white 3 protein kinase to specify ventral cell fate in the leg. Ectopic expression of Wingless outside its normal ventral domain has been shown reorganize the dorsal-ventral axis of the leg in a non-autonomous manner. Using genetic mosaics, we show that cells that lack shaggy/zeste white 3 activity can influence the fate of neighboring cells to reorganize dorsal-ventral pattern in the leg, in the same manner as Wingless-expressing cells. Therefore, clones of cells that lack shaggy/zeste white 3 activity exhibit all of the organizer activity previously attributed to Wingless-expressing cells, but do so without expressing wingless. We also show that the organizing activity of ventral cells depends upon the location of the clone along the dorsal-ventral axis. These findings suggest that Wingless protein does not function as a morphogen in the dorsal-ventral axis of the leg.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献