Initial steps of myogenesis in somites are independent of influence from axial structures

Author:

Bober E.1,Brand-Saberi B.1,Ebensperger C.1,Wilting J.1,Balling R.1,Paterson B.M.1,Arnold H.H.1,Christ B.1

Affiliation:

1. Department of Cell and Molecular Biology, Technical University of Braunschweig, Germany.

Abstract

Formation of paraxial muscles in vertebrate embryos depends upon interactions between early somites and the neural tube and notochord. Removal of both axial structures results in a complete loss of epaxial myotomal muscle, whereas hypaxial and limb muscles develop normally. We report that chicken embryos, after surgical removal of the neural tube at the level of the unsegmented paraxial mesoderm, start to develop myotomal cells that express transcripts for the muscle-specific regulators MyoD and myogenin. These cells also make desmin, indicating that the initial steps of axial skeletal muscle formation can occur in the absence of the neural tube. However, a few days following the extirpation, the expression of MyoD and myogenin transcripts gradually disappears, and becomes almost undetectable after 4 days. From these observations we conclude that the neural tube is not required for the generation of the skeletal muscle cell lineage, but may support the survival or maitenance of further differentiation of the myotomal cell compartment. Notochord transplanted medially or laterally to the unsegmented paraxial mesoderm leads to a ventralization of axial structures but does not entirely prevent the early appearance of myoblasts expressing MyoD transcripts. However, the additional notochord inhibits subsequent development and maturation of myotomes. Taken together, our data suggest that neural tube promotes, and notochord inhibits, the process of myogenesis in axial muscles at a developmental step following the initial expression of myogenic bHLH regulators.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3