Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider miteTetranychus urticae

Author:

Dearden Peter K.123,Donly Cameron2,Grbić Miodrag1

Affiliation:

1. Department of Biology, University of Western Ontario, London, Ontario N6A 5B7,Canada

2. Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada

3. Current address: Biochemistry Department, University of Otago, PO Box 56,Dunedin, New Zealand

Abstract

Embryo segmentation has been studied extensively in the fruit fly,Drosophila. These studies have demonstrated that a mechanism acting with dual segment periodicity is required for correct patterning of the body plan in this insect, but the evolutionary origin of the mechanism, the pair-rule system, is unclear. We have examined the expression of the homologues of two Drosophila pair-rule genes, runt andpaired (Pax Group III), in segmenting embryos of the two-spotted spider mite (Tetranychus urticae Koch). Spider mites are chelicerates, a group of arthropods that diverged from the lineage leading toDrosophila at least 520 million years ago. In T. urticae,the Pax Group III gene Tu-pax3/7 was expressed during patterning of the prosoma, but not the opisthosoma, in a series of stripes which appear first in even numbered segments, and then in odd numbered segments. The miterunt homologue (Tu-run) in contrast was expressed early in a circular domains that resolved into a segmental pattern. The expression patterns of both of these genes also indicated they are regulated very differently from their Drosophila homologues. The expression pattern of Tu-pax3/7 lends support to the possibility that a pair-rule patterning mechanism is active in the segmentation pathways of chelicerates.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3