Gap junctions in Malpighian tubules ofAedes aegypti

Author:

Weng Xing-He1,Piermarini Peter M.1,Yamahiro Atsuko1,Yu Ming-Jiun2,Aneshansley Daniel J.3,Beyenbach Klaus W.1

Affiliation:

1. Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853,USA

2. National Heart, Lung, and Blood Institute, National Institutes of Health,Bethesda, MD 20892, USA

3. Department of Biological and Environmental Engineering, Cornell University,Ithaca, NY 14853, USA

Abstract

SUMMARYWe present electrical, physiological and molecular evidence for substantial electrical coupling of epithelial cells in Malpighian tubules via gap junctions. Current was injected into one principal cell of the isolated Malpighian tubule and membrane voltage deflections were measured in that cell and in two neighboring principal cells. By short-circuiting the transepithelial voltage with the diuretic peptide leucokinin-VIII we largely eliminated electrical coupling of principal cells through the tubule lumen,thereby allowing coupling through gap junctions to be analyzed. The analysis of an equivalent electrical circuit of the tubule yielded an average gap-junction resistance (Rgj) of 431 kΩ between two cells. This resistance would stem from 6190 open gap-junctional channels,assuming the high single gap-junction conductance of 375 pS found in vertebrate tissues. The addition of the calcium ionophore A23187 (2 μmol l–1) to the peritubular Ringer bath containing 1.7 mmol l–1 Ca2+ did not affect the gap-junction resistance, but metabolic inhibition of the tubule with dinitrophenol (0.5 mmol l–1) increased the gap-junction resistance 66-fold,suggesting the regulation of gap junctions by ATP. Lucifer Yellow injected into a principal cell did not appear in neighboring principal cells. Thus, gap junctions allow the passage of current but not Lucifer Yellow. Using RT-PCR we found evidence for the expression of innexins 1, 2, 3 and 7 (named after their homologues in Drosophila) in Malpighian tubules. The physiological demonstration of gap junctions and the molecular evidence for innexin in Malpighian tubules of Aedes aegypti call for the double cable model of the tubule, which will improve the measurement and the interpretation of electrophysiological data collected from Malpighian tubules.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3