Echolocation by two foraging harbour porpoises (Phocoena phocoena)

Author:

Verfuß Ursula K.12,Miller Lee A.3,Pilz Peter K. D.2,Schnitzler Hans-Ulrich2

Affiliation:

1. Fjord & Bælt, Margrethes Plads 1, DK-5300 Kerteminde, Denmark

2. Tierphysiologie, Zoologisches Institut, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany

3. Institute of Biology, University of Southern Denmark, DK-5230 Odense M,Denmark

Abstract

SUMMARY Synchronized video and high-frequency audio recordings of two trained harbour porpoises searching for and capturing live fish were used to study swimming and echolocation behaviour. One animal repeated the tasks blindfolded. A splash generated by the fish being thrown into the pool or– in controls – by a boat hook indicated prey and stimulated search behaviour. The echolocation sequences were divided into search and approach phases. In the search phase the porpoises displayed a clear range-locking behaviour on landmarks, indicated by a distance-dependent decrease in click interval. Only in trials with fish was the search phase followed by an approach phase. In the initial part of the approach phase the porpoises used a rather constant click interval of around 50 ms. The terminal part started with a sudden drop in click interval at distances around 2–4 m. Close to the prey the terminal part ended with a buzz,characterized by constant click intervals around 1.5 ms. The lag time in the search and the initial part of the approach phase seems to be long enough for the porpoise to process echo information before emitting the next click (pulse mode). However, we assume that during the buzz lag times are too short for pulse mode processing and that distance information is perceived as a `pitch'with a `frequency' corresponding to the inverse of the two-way transit time(pitch mode). The swimming speed of the animal was halved when it was blindfolded, while the click intervals hardly changed, resulting in more clicks emitted per metre swum.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3