Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells

Author:

Füller Tim1,Korff Thomas1,Kilian Adrienne1,Dandekar Gudrun1,Augustin Hellmut G.1

Affiliation:

1. Department of Vascular Biology and Angiogenesis Research, Institute of Molecular Oncology, Tumor Biology Center, Breisacher Strasse 117, 79106 Freiburg, Germany

Abstract

Contact-dependent interactions between endothelial cells (ECs), as well as between ECs and mural cells, play a key role in the formation of a regular vascular system and the assembly of the vessel wall. Recent studies have identified ephrinB2 and EphB4 as markers and makers of arteriovenous differentiation during vascular development. On the basis of these findings,we hypothesized that Ephephrin interactions in the vascular system mediate distinct propulsive and repulsive effector functions that provide guidance signals for the proper spatial organization of the developing vasculature. Utilizing a set of specialized endothelial differentiation and angiogenesis assays, the present study was aimed at studying vascular morphogenic functions of endothelial EphB4 and ephrinB2 activation. EphrinB2-Fc acts anti-adhesively and induces detachment of ECs, as demonstrated by (1) inhibition of adhesion to ephrinB2-Fc-coated culture dishes, (2) detachment of ECs grown as differentiated 3D spheroids, and (3) endothelial denudation of explanted fragments of umbilical vein. Conversely, soluble ephrinB2-Fc inhibits lateral cell migration, vascular endothelial growth factor (VEGF) gradient-driven chemotaxis, capillary-like network formation and sprouting angiogenesis. In turn, soluble EphB4-Fc is pro-adhesive and stimulates EC migration and sprouting angiogenesis. EphrinB2-mediated repulsive signals are transduced by EphB4, as demonstrated by EphrinB2-Fc inhibition of sprouting angiogenesis of constitutively EphB4-overexpressing ECs. Confrontation experiments of EphB4-overexpressing ECs with ECs overexpressing full-length or truncated ephrinB2 that lacks the cytoplasmic catalytic domain demonstrated that forward EphB4 signaling with EphB4 tyrosine phosphorylation restricts intermingling of cells and supports cellular segregation. Taken together, these data identify distinct propulsive and repulsive effector functions of endothelial ephrinB2 and EphB4 that mediate spatial positional signals during angiogenesis and vessel assembly.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3