Glucose and aging control the quiescence period that follows pancreatic beta cell replication

Author:

Salpeter Seth J.1,Klein Allon M.23,Huangfu Danwei4,Grimsby Joseph5,Dor Yuval1

Affiliation:

1. Department of Developmental Biology and Cancer Research and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel

2. Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA

3. Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK

4. Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA

5. Department of Metabolic and Vascular Diseases, Hoffmann-La Roche, Nutley, NJ 07110, USA

Abstract

Pancreatic beta cell proliferation has emerged as the principal mechanism for homeostatic maintenance of beta cell mass during adult life. This underscores the importance of understanding the mechanisms of beta cell replication and suggests novel approaches for regenerative therapy to treat diabetes. Here we use an in vivo pulse-chase labeling assay to investigate the replication dynamics of adult mouse beta cells. We find that replicated beta cells are able to re-enter the cell division cycle shortly after mitosis and regain their normal proliferative potential after a short quiescence period of several days. This quiescence period is lengthened with advanced age, but shortened during injury-driven beta cell regeneration and following treatment with a pharmacological activator of glucokinase, providing strong evidence that metabolic demand is a key determinant of cell cycle re-entry. Lastly, we show that cyclin D2, a crucial factor in beta cell replication, is downregulated during cell division, and is slowly upregulated post-mitosis by a glucose-sensitive mechanism. These results demonstrate that beta cells quickly regain their capacity to re-enter the cell cycle post-mitosis and implicate glucose control of cyclin D2 expression in the regulation of this process.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3