Extracellular matrix retention of thrombospondin 1 is controlled by its conserved C-terminal region

Author:

Adams Josephine C.12,Bentley Amber A.1,Kvansakul Marc3,Hatherley Deborah4,Hohenester Erhard3

Affiliation:

1. Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA

2. Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA

3. Division of Cell and Molecular Biology, Imperial College London, Biophysics Section, Blackett Laboratory, London, SW7 2AZ, UK

4. Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK

Abstract

Thrombospondins (TSPs) are an evolutionarily ancient family of extracellular calcium-binding glycoproteins. The five mammalian TSPs collectively have important roles in angiogenesis and vascular biology, synaptogenesis, wound repair and connective tissue organisation. Their complex functions relate to the multiple postsecretion fates of TSPs that can involve endocytic uptake, proteolysis or retention within the extracellular matrix (ECM). Surprisingly, the molecular and cellular mechanisms by which TSPs become retained within the ECM are poorly understood. We hypothesised that the highly conserved TSP C-terminal domain mediates ECM retention. We report that ECM incorporation as insoluble punctate deposits is an evolutionarily conserved property of TSPs. ECM retention of TSP1 is mediated by the C-terminal region in trimeric form, and not by C-terminal monomer or trimers of the N-terminal domain or type 1 repeats. Using a novel mRFP-tagged TSP1 C-terminal trimer, we demonstrate that ECM retention involves the RGD site and a novel site in the L-lectin domain with structural similarity to the ligand-binding site of cargo transport proteins. CD47 and β1 integrins are dispensable for ECM retention, but β1 integrins enhance activity. These novel data advance concepts of the molecular processes that lead to ECM retention of TSP1.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3