Comparative rheology of human and trout red blood cells.

Author:

Nash G B1,Egginton S1

Affiliation:

1. Department of Haematology, Medical School, University of Birmingham.

Abstract

We have studied the comparative rheology of individual red blood cells from humans and rainbow trout (Oncorhynchus mykiss) at their natural body temperatures. Trout red blood cells were large ellipsoids (about 16 microns x 11.5 microns x 2.5 microns) with a mean volume of 250 fl, a surface area of approximately 350 microns 2 and an elongated nucleus of about 9 microns x 5 microns. Although much larger than human red cells (diameter 8 microns, V = 92 fl, A = 136 microns 2), both theoretical calculation and experimental aspiration into micropipettes indicated that the limiting size of a cylindrical vessel that both types of cell could enter was approximately 3 microns. Nevertheless, individual trout red cells had much longer transit times through 5 microns filter pores and were much slower to enter 3-4 microns diameter micropipettes. Interestingly, the relative deformability of the trout cells depended on the pore size and applied pressure, with entry times for trout and human cells converging as pipette diameter increased. The relatively poor overall cellular deformability of the trout cells reflected their membrane rigidity (shear elastic modulus 4-5 times higher than that of human membrane), as well as their large size and the presence of a prominent nucleus. Capillary diameters in trout muscle are similar to those in the human microcirculation (about 3 microns), while systemic driving pressures are much lower. Therefore, either red cell deformability is a less critical circulatory parameter than has previously been thought, or the apparently disadvantageous blood rheology of trout is adequate because of the lower demand for tissue perfusion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3