Altered cytoskeletal arrangement in induced pluripotent stem cells and motor neurons from patients with riboflavin transporter deficiency

Author:

Niceforo Alessia12,Marioli Chiara3,Colasuonno Fiorella12ORCID,Petrini Stefania4,Massey Keith5,Tartaglia Marco3,Bertini Enrico23,Moreno Sandra1ORCID,Compagnucci Claudia3ORCID

Affiliation:

1. Department of Science, Laboratorio Interdipartimentale di Microscopia Elettronica, University Roma Tre, Rome 00146, Italy

2. Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy

3. Genetics and Rare Diseases Research Division, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy

4. Confocal Microscopy Core Facility, Research Laboratories, IRCCS Ospedale Pediatrico Bambino Gesù, Rome 00146, Italy

5. Science Director, Cure RTD Foundation, 6228 Northaven Road, Dallas, TX 75230, USA

Abstract

ABSTRACT The cytoskeletal network plays a crucial role in the differentiation, morphogenesis, function and homeostasis of the nervous tissue, so that alterations in any of its components may lead to neurodegenerative diseases. Riboflavin transporter deficiency (RTD), a childhood-onset disorder characterized by degeneration of motor neurons (MNs), is caused by biallelic mutations in genes encoding the human riboflavin (RF) transporters. In a patient-specific induced pluripotent stem cells (iPSCs) model of RTD, we recently demonstrated altered cell-cell contacts, energy dysmetabolism and redox imbalance. The present study focuses on cytoskeletal composition and dynamics associated to RTD, utilizing patients' iPSCs and derived MNs. Abnormal expression and distribution of α- and β-tubulin (α- and β-TUB), as well as imbalanced tyrosination of α-TUB, accompanied by an impaired ability to re-polymerize after nocodazole treatment, were found in RTD patient-derived iPSCs. Following differentiation, MNs showed consistent changes in TUB content, which was associated with abnormal morphofunctional features, such as neurite length and Ca2+ homeostasis, suggesting impaired differentiation. Beneficial effects of RF supplementation, alone or in combination with the antioxidant molecule N-acetyl cystine (NAC), were assessed. RF administration resulted in partially improved cytoskeletal features in patients' iPSCs and MNs, suggesting that redundancy of transporters may rescue cell functionality in the presence of adequate concentrations of the vitamin. Moreover, supplementation with NAC was demonstrated to be effective in restoring all the considered parameters, when used in combination with RF, thus supporting the therapeutic use of both compounds.

Funder

Cure RTD Foundation

Cinque per Mille

Ricerca Corrente

Italian Ministry of Education and Research

Grant of Excellence

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3