Mesenchyme-dependent BMP signaling directs the timing of mandibular osteogenesis

Author:

Merrill Amy E.1,Eames B. Frank1,Weston Scott J.1,Heath Thayer1,Schneider Richard A.1

Affiliation:

1. Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514,USA.

Abstract

To identify molecular and cellular mechanisms that determine when bone forms, and to elucidate the role played by osteogenic mesenchyme, we employed an avian chimeric system that draws upon the divergent embryonic maturation rates of quail and duck. Pre-migratory neural crest mesenchyme destined to form bone in the mandible was transplanted from quail to duck. In resulting chimeras, quail donor mesenchyme established significantly faster molecular and histological programs for osteogenesis within the relatively slower-progressing duck host environment. To understand this phenotype, we assayed for changes in the timing of epithelial-mesenchymal interactions required for bone formation and found that such interactions were accelerated in chimeras. In situ hybridization analyses uncovered donor-dependent changes in the spatiotemporal expression of genes, including the osteo-inductive growth factor Bmp4. Mesenchymal expression of Bmp4correlated with an ability of quail donor cells to form bone precociously without duck host epithelium, and also relied upon epithelial interactions until mesenchyme could form bone independently. Treating control mandibles with exogenous BMP4 recapitulated the capacity of chimeras to express molecular mediators of osteogenesis prematurely and led to the early differentiation of bone. Inhibiting BMP signaling delayed bone formation in a stage-dependent manner that was accelerated in chimeras. Thus, mandibular mesenchyme dictates when bone forms by temporally regulating its interactions with epithelium and its own expression of Bmp4. Our findings offer a developmental mechanism to explain how neural crest-derived mesenchyme and BMP signaling underlie the evolution of species-specific skeletal morphology.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3