Molecular basis of Climp63-mediated ER lumen spacing

Author:

Xu Lu12,Xiang Yun23,Hu Junjie23ORCID

Affiliation:

1. College of Life Sciences, Nankai University 1 Department of Genetics and Cell Biology , , Tianjin , 300071, China

2. Institute of Biophysics, Chinese Academy of Sciences 2 National Laboratory of Biomolecules , , Beijing , 100101, China

3. College of Life Sciences, University of Chinese Academy of Sciences 3 , Beijing , 100190, China

Abstract

ABSTRACT The width of cisternal structures in the endoplasmic reticulum (ER) is maintained by the ER-resident protein Climp63 (also known as CKAP4). Self-association of the Climp63 luminal domain (LD), even though moderate, plays a key role in shaping ER sheets. However, the molecular basis of luminal spacing remains elusive. Here, we analyzed the homotypic interactions of the Climp63 LD using deep learning-predicted structures. The LD is highly α-helical, with a flexible leading helix followed by a five-helix bundle (5HB). Charge-based trans associations were formed between the tip of the 5HB and the C-terminus of the LD, consistent with generating a width of ∼50 nm for ER sheets. The leading helix of the LD was dispensable for homotypic interactions but packing of the 5HB regulated self-association. The density of Climp63, likely reflecting the strength of cis interactions, influenced the ER width, which was maintained by trans interactions. These results indicate that a general principle in maintaining membrane tethering is multi-modular self-association.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

National Key R&D Program of China

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2023 Winners: Stephen Coscia, Eirini Tsekitsidou and Rachel Wills;Journal of Cell Science;2024-05-15

2. First person – Lu Xu;Journal of Cell Science;2023-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3