Hox gene Abdominal-B uses DoublesexF as a cofactor to promote neuroblast apoptosis in Drosophila central nervous system

Author:

Ghosh Neha12ORCID,Bakshi Asif12ORCID,Khandelwal Risha12,Rajan Sriivatsan Govinda3,Joshi Rohit1ORCID

Affiliation:

1. Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad-500039, India

2. Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India

3. Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA

Abstract

Highly conserved DM domain containing transcription factors (Doublesex/MAB-3/DMRT1) are responsible for generating sexually dimorphic features. In Drosophila CNS a set of Doublesex (Dsx) expressing neuroblasts undergo apoptosis in females while their male counterparts proliferate and give rise to serotonergic neurons crucial for adult mating behaviour. Our study demonstrates that female specific isoform of Doublesex collaborates with Hox gene Abdominal-B (AbdB) to bring about this apoptosis. Biochemical results suggest AbdB and Dsx interact through their highly conserved Homeodomain and DM domains respectively. This interaction is translated into a cooperative binding of the two proteins (AbdB and Dsx) on the apoptotic enhancer in case of females but not in case of males, resulting in female specific activation of apoptotic genes. The capacity of AbdB to utilize sex specific isoform of Dsx as a cofactor underlines the possibility that two classes of proteins are capable of cooperating in selection and regulation of target genes in tissue and sex specific manner. We propose that this interaction could be a common theme in generating sexual dimorphism in different tissues across different species.

Funder

DBT India Alliance

Department of Biotechnology , Ministry of Science and Technology

Science and Engineering Research Board

Indian Council of Medical Research

University Grants Commission

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3