Multisensory integration supports configural learning of a home refuge in the whip spider Phrynus marginemaculatus

Author:

Flanigan Kaylyn A. S.12,Wiegmann Daniel D.12,Hebets Eileen A.3,Bingman Verner P.24ORCID

Affiliation:

1. Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0001, USA

2. J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA

3. School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA

4. Department of Psychology, Bowling Green State University, Bowling Green, OH43403-0001, USA

Abstract

ABSTRACT Whip spiders (Amblypygi) reside in structurally complex habitats and are nocturnally active yet display notable navigational abilities. From the theory that uncertainty in sensory inputs should promote multisensory representations to guide behavior, we hypothesized that their navigation is supported by a multisensory and perhaps configural representation of navigational inputs, an ability documented in a few insects and never reported in arachnids. We trained Phrynus marginemaculatus to recognize a home shelter characterized by both discriminative olfactory and tactile stimuli. In tests, subjects readily discriminated between shelters based on the paired stimuli. However, subjects failed to recognize the shelter in tests with either of the component stimuli alone. This result is consistent with the hypothesis that the terminal phase of their navigational behavior, shelter recognition, can be supported by the integration of multisensory stimuli as an enduring, configural representation. We hypothesize that multisensory learning occurs in the whip spiders' extraordinarily large mushroom bodies, which may functionally resemble the hippocampus of vertebrates.

Funder

National Geographic Society

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3