Affiliation:
1. Department of Biological Sciences, Mississippi State University 1 , MS 39762 , USA
2. Sloan Kettering Institute 2 Developmental Biology Program , , NY 10065 , USA
Abstract
ABSTRACT
Modeling has led to proposals that the amount of neural tissue folding is set by the level of differential expansion between tissue layers and that the wavelength is set by the thickness of the outer layer. Here, we used inbred mouse strains with distinct amounts of cerebellar folding to investigate these predictions. We identified a distinct critical period during which the folding amount diverges between the two strains. In this period, regional changes in the level of differential expansion between the external granule layer (EGL) and underlying core correlate with the folding amount in each strain. Additionally, the thickness of the EGL varies regionally during the critical period alongside corresponding changes in wavelength. The number of SHH-expressing Purkinje cells predicts the folding amount, but the proliferation rate in the EGL is the same between the strains. However, regional changes in the cell division angle within the EGL predicts both the tangential expansion and the thickness of the EGL. Cell division angle is likely a tunable mechanism whereby both the level of differential expansion along the perimeter and the thickness of the EGL are regionally tuned to set the amount and wavelength of folding.
Funder
National Science Foundation
National Institute of Neurological Disorders and Stroke
National Institute of Mental Health
National Cancer Institute
Mississippi State University
Publisher
The Company of Biologists
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献