On the shape of migrating cells — a `front-to-back' model

Author:

Bretscher Mark S.1

Affiliation:

1. MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK

Abstract

The wide range of shapes that are seen in stationary animal cells is believed to be the result of an interplay between giant filamentous complexes – largely the microfilaments and microtubules – although how this is achieved is unknown. In a migrating cell these large elements are also important, but here I suggest an additional factor: the cell surface distribution of those molecules that attach the cell to the substratum. As an animal cell advances, the attachments it makes with the substratum necessarily move backwards with respect to the cell. A fresh supply of these attachments – usually integrin molecules – is required at the cell front so that new attachments can be made. This supply is believed to be provided by the endocytic cycle, which enables the collection of integrins and other molecules from elsewhere on the surface of the cell to be recirculated to the front end of the cell. The rate at which a particular integrin cycles will determine its distribution on the ventral surface of the cell and this, in turn, might help to determine the shape of the cell. I also propose that adhesion molecules that have a slow rate of cycling will produce a flattish phenotype, as seen in fibroblasts, whereas a more rapid cycling will lead to a more snail-like shape. In addition, this model suggests why membrane ruffling occurs and that large non-circulating surface molecules move towards the back of the cell where they might assist in detaching the back end of the cell.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3