Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development

Author:

Yu X. Sean1,Jiang Jean X.1

Affiliation:

1. Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA

Abstract

We observed that chick lens-fiber gap-junction-forming proteins, connexin (Cx) 45.6 and Cx56, were associated with an unknown protein, which was then identified as major intrinsic protein (MIP), also known as aquaporin-0 (AQP0), the most abundant membrane protein in lens fibers. A 1063 bp cDNA of chick MIP(AQP0) was identified that encodes a 262 amino acid protein with a predicted molecular weight of 28.1 kDa. Dual immunofluorescence and confocal microscopy of sagittal and coronal sections of the lens tissues showed that MIP(AQP0) consistently localized with gap junction plaques formed by Cx45.6 and Cx56 during the early stages of embryonic chick lens development. Immunoprecipitation combined with immunoblotting analyses revealed that MIP(AQP0) was associated with Cx45.6 and Cx56 at these developmental stages. The specificity of this interaction was further confirmed with the silver staining of the protein components of immunoprecipitates. The pull-down analysis of lens lysates revealed that C-terminus of MIP(AQP0) probably interacted with these two fiber connexins. In late embryonic and adult lenses, however, uniform co-distribution of MIP(AQP0) and fiber connexins was largely disrupted, except for the area surrounding the actively differentiating bow regions, as was revealed by immunofluorescence and immunoprecipitation experiments. The interaction of MIP(AQP0) with lens fiber connexins in differentiating lens cells but not in mature lens fibers suggests a potential role for MIP(AQP0) in the facilitation of fiber connexins for the formation of gap junctions during lens development.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3